Please rotate your device to landscape mode for a better experience.
Login

Blossom Bytes
GP: 3 | W: 3 | L: 0 | OTL: 0 | P: 6
GF: 15 | GA: 4 | PP%: 22.73% | PK%: 86.67%
GM : Gerd | Morale : 99 | Team Overall : N/A
Next Games #56 vs Admirals

Game Center
Wolf Pack
1-2-0, 2pts
0
FINAL
4 Blossom Bytes
3-0-0, 6pts
Team Stats
L2StreakW3
1-0-0Home Record1-0-0
0-2-0Home Record2-0-0
1-2-0Last 10 Games3-0-0
2.00Goals Per Game5.00
3.67Goals Against Per Game1.33
16.67%Power Play Percentage22.73%
81.25%Penalty Kill Percentage86.67%
Blossom Bytes
3-0-0, 6pts
4
FINAL
1 Senators
0-1-1, 1pts
Team Stats
W3StreakL1
1-0-0Home Record0-1-1
2-0-0Home Record0-0-0
3-0-0Last 10 Games0-1-1
5.00Goals Per Game2.50
1.33Goals Against Per Game4.50
22.73%Power Play Percentage30.00%
86.67%Penalty Kill Percentage83.33%
Admirals
0-3-0, 0pts
Day 8
Blossom Bytes
3-0-0, 6pts
Team Stats
L3StreakW3
0-2-0Home Record1-0-0
0-1-0Away Record2-0-0
0-3-0Last 10 Games3-0-0
2.33Goals Per Game5.00
6.33Goals Against Per Game5.00
14.29%Power Play Percentage22.73%
61.54%Penalty Kill Percentage86.67%
Blossom Bytes
3-0-0, 6pts
Day 10
Titans
1-3-0, 2pts
Team Stats
W3StreakL1
1-0-0Home Record0-1-0
2-0-0Away Record1-2-0
3-0-0Last 10 Games1-3-0
5.00Goals Per Game2.50
1.33Goals Against Per Game2.50
22.73%Power Play Percentage8.70%
86.67%Penalty Kill Percentage50.00%
Grisards
3-0-1, 7pts
Day 12
Blossom Bytes
3-0-0, 6pts
Team Stats
OTL1StreakW3
2-0-0Home Record1-0-0
1-0-1Away Record2-0-0
3-0-1Last 10 Games3-0-0
4.25Goals Per Game5.00
3.75Goals Against Per Game5.00
41.67%Power Play Percentage22.73%
60.00%Penalty Kill Percentage86.67%
Team Leaders
Goals
Nikita Grebenkin
4
Assists
Michael Milne
5
Points
John Farinacci
6
Plus/Minus
Tyrel Bauer
7
Wins
Arvid Holm
3
Save Percentage
Arvid Holm
0.956

Team Stats
Goals For
15
5.00 GFG
Shots For
123
41.00 Avg
Power Play Percentage
22.7%
5 GF
Offensive Zone Start
36.6%
Goals Against
4
1.33 GAA
Shots Against
90
30.00 Avg
Penalty Kill Percentage
86.7%%
2 GA
Defensive Zone Start
34.2%
Team Info

General ManagerGerd
CoachAdam Foote
DivisionAtlantic Division
ConferenceEastern Conference
Captain
Assistant #1
Assistant #2


Arena Info

Capacity8,000
Attendance4,855
Season Tickets800


Roster Info

Pro Team30
Farm Team22
Contract Limit52 / 65
Prospects14


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1John FarinacciXXX100.00735094707477886383656273654961099002311,312,500$
2Julien GauthierXX100.00785093788577737361677171655863096002732,325,000$
3Jens LookeXX100.00606060606070706060606060606370097002711,783,180$
4Martin ChromiakXX100.0060606060607070606060606060435809900222866,250$
5Jason PolinXX100.0060509367757583626162636765505909900252682,500$
6Nikita NesterenkoX100.0069508870747792696170697065415609600232682,500$
7Riley DuranXXX100.0073509362677989616861627365415609900221700,000$
8Justin RobidasX100.0062509471667893647165636765415609900211825,000$
9Michael MilneXX100.0073508867707589626162637165415609900221825,000$
10Nikita GrebenkinXX100.0065508769797588656165646965405509901212650,000$
11Gracyn Sawchyn (R)X100.00606060606070706060606060604655099001931,250,000$
12Ilya Protas (R)XX100.0060606060607070606060606060425509900183975,000$
13Lukas CormierX100.00606060606070706060606060605361093002211,023,750$
14Tyrel BauerX100.0060606060607070606060606060425709900222787,500$
15Sean BehrensX100.00606060606070706060606060604156096002111,250,000$
16Dylan AnhornX100.0060606060607070606060606060415609900252682,500$
17Cameron AllenX100.0060606060607070606060606060405509901192825,000$
18Ty Murchison (R)X100.0060606060607070606060606060485509900212700,000$
Scratches
1Noel GunlerXX100.00606060606070706060606060604358096002321,312,500$
2Ryder KorczakX100.00606060606070706060606060604358096002221,023,750$
3Vinzenz RohrerXXX100.0060606060607070606060606060415609600201975,000$
4Hunter HaightXXX100.00606060606070706060606060604156096002011,250,000$
5Dylan WendtXXX100.0060606060607070606060606060405509600231650,000$
6Connor KelleyX100.0060606060607070606060606060405509601221650,000$
7Ty Gallagher (R)X100.0060606060607070606060606060485509600212750,000$
TEAM AVERAGE100.006357706364727562626161636245570970
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Arvid Holm100.0060707060606060606060605664099002621,466,625$
2Ales Stezka100.006070706060606060606060556609900275727,650$
Scratches
1Isaiah Saville100.006070706060606060606060505909800241866,250$
2Hampton Slukynsky (R)100.006070706060606060606060425509800193750,000$
3Harrison Meneghin (R)100.006070706060606060606060465509800203650,000$
TEAM AVERAGE100.00607070606060606060606050600980
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Adam Foote8076687961661CAN543600,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1John FarinacciBlossom Bytes (SJS)C/LW/RW324630012122916.67%26521.700333150001110050.00%6421001.8400000100
2Michael MilneBlossom Bytes (SJS)LW/RW30553205110260%15016.85033315000000040.00%510001.9800000001
3Nikita GrebenkinBlossom Bytes (SJS)LW/RW341530063145328.57%35016.77202515000000033.33%600001.9900000011
4Lukas CormierBlossom Bytes (SJS)D304471410837110%47625.5800021400009000%002001.0400020010
5Tyrel BauerBlossom Bytes (SJS)D313478051071314.29%07625.5710121500007000%011001.0400000000
6Julien GauthierBlossom Bytes (SJS)LW/RW3303055041861216.67%04916.44202714000011033.33%340001.2200010000
7Nikita NesterenkoBlossom Bytes (SJS)C3033055439250%14916.53022215000000049.06%5310001.2100010000
8Justin RobidasBlossom Bytes (SJS)C32133003661433.33%03511.80000000000111165.00%2023001.6900000100
9Martin ChromiakBlossom Bytes (SJS)LW/RW3022300211020%0248.09000000000000100.00%120001.6500000000
10Riley DuranBlossom Bytes (SJS)C/LW/RW32022003365533.33%34414.73000000000121077.78%921000.9100000000
11Jens LookeBlossom Bytes (SJS)LW/RW3101310100061216.67%0248.030000000000000%101000.8300110001
12Jason PolinBlossom Bytes (SJS)LW/RW3011255169460%24113.94000000002110020.00%500000.4800001000
13Cameron AllenBlossom Bytes (SJS)D3011200242100%04113.880000000026000%010000.4800000000
14Gracyn SawchynBlossom Bytes (SJS)C3011200335230%13110.4500000000000038.71%3100000.6400000000
15Sean BehrensBlossom Bytes (SJS)D3000-11010542000%36020.18000014000113000%01200000011000
16Dylan AnhornBlossom Bytes (SJS)D3000275113120%24013.440000200001000%00000000001000
17Ty MurchisonBlossom Bytes (SJS)D3000-195804000%16220.89000015000111000%01200000001000
18Ilya ProtasBlossom Bytes (SJS)C/LW30000255542320%24816.13000014000000050.00%42000000001000
Team Total or Average5415264140100606258123376512.20%2587316.175813241540007983149.01%2022013000.9400165223
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Arvid HolmBlossom Bytes (SJS)33000.9561.331800149047000030110
Team Total or Average33000.9561.33180014904700030110


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Country Rookie Weight Height No Trade Available For Trade Acquired By Last Trade Date Force Waivers Waiver Possible Contract Contract Signature Date Force UFA Emergency Recall Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Salary Cap Year 2Salary Cap Year 3Salary Cap Year 4Salary Cap Year 5Salary Cap Year 6Salary Cap Year 7Salary Cap Year 8Salary Cap Year 9Salary Cap Year 10No Trade Year 2No Trade Year 3No Trade Year 4No Trade Year 5No Trade Year 6No Trade Year 7No Trade Year 8No Trade Year 9No Trade Year 10Link
Ales StezkaBlossom Bytes (SJS)G271997-01-06CZENo190 Lbs6 ft4NoNoN/ANoNo5FalseFalsePro & Farm727,650$700,557$72,765$70,056$No727,650$727,650$727,650$727,650$-----727,650$727,650$727,650$727,650$-----NoNoNoNo-----
Arvid HolmBlossom Bytes (SJS)G261998-11-03SWENo214 Lbs6 ft4NoNoN/ANoNo22025-09-08FalseFalsePro & Farm1,466,625$1,412,017$146,662$141,201$No1,466,625$--------1,466,625$--------No--------
Cameron AllenBlossom Bytes (SJS)D192005-01-07CANNo194 Lbs6 ft0NoNoN/ANoNo2FalseFalsePro & Farm825,000$794,282$82,500$79,428$No825,000$--------825,000$--------No--------
Connor KelleyBlossom Bytes (SJS)D222002-01-30USANo201 Lbs6 ft2NoNoN/ANoNo1FalseFalsePro & Farm650,000$625,798$65,000$62,580$No---------------------------
Dylan AnhornBlossom Bytes (SJS)D251999-01-21CANNo190 Lbs6 ft0NoNoN/ANoNo22025-09-08FalseFalsePro & Farm682,500$657,088$68,250$65,709$No682,500$--------682,500$--------No--------
Dylan WendtBlossom Bytes (SJS)C/LW/RW232001-01-09USANo185 Lbs6 ft1NoNoFree AgentNoNo12025-06-11FalseFalsePro & Farm650,000$625,798$65,000$62,580$No---------------------------
Gracyn SawchynBlossom Bytes (SJS)C192005-01-19CANYes154 Lbs5 ft10NoNoProspectNoNo32025-08-21FalseFalsePro & Farm1,250,000$1,203,457$125,000$120,346$No1,250,000$1,250,000$-------1,250,000$1,250,000$-------NoNo-------
Hampton SlukynskyBlossom Bytes (SJS)G192005-07-02USAYes190 Lbs5 ft11NoNoProspectNoNo32025-08-21FalseFalsePro & Farm750,000$722,074$75,000$72,207$No750,000$750,000$-------750,000$750,000$-------NoNo-------
Harrison MeneghinBlossom Bytes (SJS)G202004-09-13CANYes174 Lbs6 ft2NoNoDraftNoNo32025-08-21FalseFalsePro & Farm650,000$625,798$65,000$62,580$No650,000$650,000$-------650,000$650,000$-------NoNo-------
Hunter HaightBlossom Bytes (SJS)C/LW/RW202004-04-04CANNo180 Lbs6 ft7NoNoN/ANoNo1FalseFalsePro & Farm1,250,000$1,203,457$125,000$120,346$No---------------------------
Ilya ProtasBlossom Bytes (SJS)C/LW182006-07-18BLRYes201 Lbs6 ft3NoNoDraftNoNo32025-08-21FalseFalsePro & Farm975,000$938,697$97,500$93,870$No975,000$975,000$-------975,000$975,000$-------NoNo-------
Isaiah SavilleBlossom Bytes (SJS)G242000-09-21USANo196 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm866,250$833,996$86,625$83,400$No---------------------------
Jason PolinBlossom Bytes (SJS)LW/RW251999-06-17USANo198 Lbs6 ft0NoNoN/ANoNo22025-09-08FalseFalsePro & Farm682,500$657,088$68,250$65,709$No682,500$--------682,500$--------No--------
Jens LookeBlossom Bytes (SJS)LW/RW271997-04-11SWENo185 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm1,783,180$1,716,785$178,318$171,678$No---------------------------
John FarinacciBlossom Bytes (SJS)C/LW/RW232001-02-14USANo197 Lbs5 ft11NoNoN/ANoNo1FalseFalsePro & Farm1,312,500$1,263,630$131,250$126,363$No---------------------------
Julien Gauthier (1 Way Contract)Blossom Bytes (SJS)LW/RW271997-10-15CANNo226 Lbs6 ft4NoNoN/ANoNo3FalseFalsePro & Farm2,325,000$2,237,500$2,325,000$2,237,500$No2,325,000$2,325,000$-------2,325,000$2,325,000$-------NoNo-------
Justin RobidasBlossom Bytes (SJS)C212003-03-13USANo176 Lbs5 ft8NoNoN/ANoNo1FalseFalsePro & Farm825,000$794,282$82,500$79,428$No---------------------------
Lukas CormierBlossom Bytes (SJS)D222002-03-27CANNo185 Lbs5 ft11NoNoN/ANoNo1FalseFalsePro & Farm1,023,750$985,632$102,375$98,563$No---------------------------
Martin ChromiakBlossom Bytes (SJS)LW/RW222002-08-20SVKNo190 Lbs6 ft0NoNoN/ANoNo22025-09-08FalseFalsePro & Farm866,250$833,996$86,625$83,400$No866,250$--------866,250$--------No--------
Michael MilneBlossom Bytes (SJS)LW/RW222002-09-21CANNo185 Lbs5 ft11NoNoN/ANoNo1FalseFalsePro & Farm825,000$794,282$82,500$79,428$No---------------------------
Nikita GrebenkinBlossom Bytes (SJS)LW/RW212003-05-02RUSNo210 Lbs6 ft2NoNoN/ANoNo2FalseFalsePro & Farm650,000$625,798$65,000$62,580$No650,000$--------650,000$--------No--------
Nikita NesterenkoBlossom Bytes (SJS)C232001-09-10USANo195 Lbs6 ft2NoNoN/ANoNo22025-09-08FalseFalsePro & Farm682,500$657,088$68,250$65,709$No682,500$--------682,500$--------No--------
Noel GunlerBlossom Bytes (SJS)LW/RW232001-10-07SWENo176 Lbs6 ft2NoNoN/ANoNo22025-09-08FalseFalsePro & Farm1,312,500$1,263,630$131,250$126,363$No1,312,500$--------1,312,500$--------No--------
Riley DuranBlossom Bytes (SJS)C/LW/RW222002-01-25USANo174 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm700,000$673,936$70,000$67,394$No---------------------------
Ryder KorczakBlossom Bytes (SJS)C222002-09-23CANNo172 Lbs5 ft11NoNoN/ANoNo22025-09-08FalseFalsePro & Farm1,023,750$985,632$102,375$98,563$No1,023,750$--------1,023,750$--------No--------
Sean BehrensBlossom Bytes (SJS)D212003-03-31USANo177 Lbs6 ft8NoNoN/ANoNo1FalseFalsePro & Farm1,250,000$1,203,457$125,000$120,346$No---------------------------
Ty GallagherBlossom Bytes (SJS)D212003-03-06USAYes196 Lbs5 ft10NoNoProspectNoNo22025-08-21FalseFalsePro & Farm750,000$722,074$75,000$72,207$No750,000$--------750,000$--------No--------
Ty MurchisonBlossom Bytes (SJS)D212003-02-02USAYes205 Lbs6 ft0NoNoProspectNoNo22025-08-21FalseFalsePro & Farm700,000$673,936$70,000$67,394$No700,000$--------700,000$--------No--------
Tyrel BauerBlossom Bytes (SJS)D222002-05-23CANNo207 Lbs6 ft3NoNoN/ANoNo22025-09-08FalseFalsePro & Farm787,500$758,178$78,750$75,818$No787,500$--------787,500$--------No--------
Vinzenz RohrerBlossom Bytes (SJS)C/LW/RW202004-09-09AUTNo178 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm975,000$938,697$97,500$93,870$No---------------------------
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3022.23190 Lbs6 ft11.87973,915$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Ilya ProtasNikita NesterenkoJulien Gauthier28122
2Nikita GrebenkinJohn FarinacciMichael Milne28122
3Riley DuranGracyn SawchynJason Polin25122
4Jens LookeJustin RobidasMartin Chromiak19122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Lukas CormierTyrel Bauer28122
2Ty MurchisonSean Behrens28122
3Dylan AnhornCameron Allen25122
4Lukas CormierTyrel Bauer19122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Ilya ProtasNikita NesterenkoJulien Gauthier50122
2Nikita GrebenkinJohn FarinacciMichael Milne50122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Lukas CormierTyrel Bauer50122
2Ty MurchisonSean Behrens50122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Justin RobidasJason Polin50122
2Riley DuranJohn Farinacci50122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Lukas CormierTyrel Bauer50122
2Ty MurchisonSean Behrens50122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Nikita Grebenkin50122Lukas CormierTyrel Bauer50122
2Julien Gauthier50122Ty MurchisonSean Behrens50122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Gracyn SawchynJulien Gauthier50122
2Nikita NesterenkoJohn Farinacci50122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Lukas CormierTyrel Bauer50122
2Ty MurchisonSean Behrens50122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Gracyn SawchynNikita NesterenkoJulien GauthierLukas CormierTyrel Bauer
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Ilya ProtasJustin RobidasJulien GauthierLukas CormierRiley Duran
Extra Forwards
Normal PowerPlayPenalty Kill
Ilya Protas, Jason Polin, Justin RobidasIlya Protas, Julien GauthierJustin Robidas
Extra Defensemen
Normal PowerPlayPenalty Kill
Dylan Anhorn, Cameron Allen, Ty MurchisonDylan AnhornCameron Allen, Ty Murchison
Penalty Shots
Justin Robidas, Julien Gauthier, Nikita Nesterenko, John Farinacci, Nikita Grebenkin
Goalie
#1 : Arvid Holm, #2 : Ales Stezka


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals11000000734000000000001100000073421.00071219003750433641460381243277228.57%4175.00%0387451.35%366952.17%255942.37%673556295628
2Senators11000000413000000000001100000041321.000461000375029364146037812219111.11%6183.33%0387451.35%366952.17%255942.37%673556295628
3Wolf Pack11000000404110000004040000000000021.000481201375051364146015545146233.33%50100.00%0387451.35%366952.17%255942.37%673556295628
Total33000000154111100000040422000000114761.000152641013750123364146090251006222522.73%15286.67%0387451.35%366952.17%255942.37%673556295628
_Since Last GM Reset33000000154111100000040422000000114761.000152641013750123364146090251006222522.73%15286.67%0387451.35%366952.17%255942.37%673556295628
_Vs Conference33000000154111100000040422000000114761.000152641013750123364146090251006222522.73%15286.67%0387451.35%366952.17%255942.37%673556295628
_Vs Division12000000413010000000001100000041342.000461000375029364146037812219111.11%6183.33%0387451.35%366952.17%255942.37%673556295628

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
36W315264112390251006201
All Games
GPWLOTWOTL SOWSOLGFGA
3300000154
Home Games
GPWLOTWOTL SOWSOLGFGA
110000040
Visitor Games
GPWLOTWOTL SOWSOLGFGA
2200000114
Last 10 Games
WLOTWOTL SOWSOL
300000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
22522.73%15286.67%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
36414603750
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
387451.35%366952.17%255942.37%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
673556295628


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
12Blossom Bytes7Admirals3WBoxScore
430Wolf Pack0Blossom Bytes4WBoxScore
536Blossom Bytes4Senators1WBoxScore
856Admirals-Blossom Bytes-
1071Blossom Bytes-Titans-
1286Grisards-Blossom Bytes-
1395Blossom Bytes-Gulls-
15109Blossom Bytes-Bears-
17125Penguins-Blossom Bytes-
18134Blossom Bytes-Rams-
21159Wolves-Blossom Bytes-
23168Blossom Bytes-Gulls-
26184Penguins-Blossom Bytes-
29211Blossom Bytes-Bears-
31220Gulls-Blossom Bytes-
35246Wolf Pack-Blossom Bytes-
38267Americans-Blossom Bytes-
40280Blossom Bytes-Grisards-
43303Wolves-Blossom Bytes-
45313Blossom Bytes-Wolves-
47325Blossom Bytes-Admirals-
49339Senators-Blossom Bytes-
51360Blossom Bytes-Whalers-
53370Octopus-Blossom Bytes-
56396Silver Knights-Blossom Bytes-
57410Blossom Bytes-Bulldogs-
60427White Wolves-Blossom Bytes-
62445Blossom Bytes-Penguins-
65461Admirals-Blossom Bytes-
68478Blossom Bytes-White Wolves-
70493Bears-Blossom Bytes-
74519Titans-Blossom Bytes-
78549Mountaineers-Blossom Bytes-
80567Blossom Bytes-Blood Miners-
83582Bulldogs-Blossom Bytes-
85601Blossom Bytes-Moose-
87613Phantoms-Blossom Bytes-
90635Blossom Bytes-Moose-
91644Wolf Pack-Blossom Bytes-
94667Blossom Bytes-Titans-
95675Blossom Bytes-Gulls-
97684Moose-Blossom Bytes-
100707Saints-Blossom Bytes-
102726Blossom Bytes-Phantoms-
104740Phantoms-Blossom Bytes-
106753Blossom Bytes-Roadrunners-
108766Blossom Bytes-Penguins-
110776Bears-Blossom Bytes-
112793Blossom Bytes-Senators-
114804Blossom Bytes-Reign-
115816Gulls-Blossom Bytes-
119842Blossom Bytes-Eagles-
120848Griffins-Blossom Bytes-
122870Blossom Bytes-Bills-
124878Grisards-Blossom Bytes-
127906Titans-Blossom Bytes-
129920Blossom Bytes-Titans-
131937Blossom Bytes-Rams-
132943Penguins-Blossom Bytes-
136969Blossom Bytes-Rams-
137975Rocket-Blossom Bytes-
1401000Gorillas-Blossom Bytes-
1421014Blossom Bytes-Crunch-
1431023Blossom Bytes-Bears-
1451038Norsemen-Blossom Bytes-
1481061Blossom Bytes-Admirals-
1491069Gorillas-Blossom Bytes-
1531096Grisards-Blossom Bytes-
1551109Blossom Bytes-Crunch-
1571128Redhawks-Blossom Bytes-
1581136Blossom Bytes-Wolf Pack-
1621159Whalers-Blossom Bytes-
1631168Blossom Bytes-Americans-
1661191Admirals-Blossom Bytes-
1671197Blossom Bytes-Senators-
Trade Deadline --- Trades can’t be done after this day is simulated!
1691214Blossom Bytes-Americans-
1721227Blossom Bytes-Norsemen-
1741238Whalers-Blossom Bytes-
1781261Rams-Blossom Bytes-
1811280Blossom Bytes-Wolf Pack-
1831292Blossom Bytes-Norsemen-
1861306Rams-Blossom Bytes-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity25005500
Ticket Price4525
Attendance1,7243,131
Attendance PCT68.96%56.93%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
40 4855 - 60.69% 187,026$187,026$8000110

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Salaries CapCoaches Salaries
122,472$ 2,689,246$ 2,689,246$ 600,000$0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
17,496$ 122,472$ 29 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
7,481,040$ 181 17,496$ 3,166,776$




Blossom Bytes Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Blossom Bytes Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Blossom Bytes Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Blossom Bytes Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Blossom Bytes Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA